Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis.
نویسندگان
چکیده
Limited data exist on the pharmacokinetic-pharmacodynamic (PK-PD) parameters of the bactericidal activities of the available antimycobacterial drugs. We report on the PK-PD relationships for isoniazid. Isoniazid exhibited concentration (C)-dependent killing of Mycobacterium tuberculosis H37Rv in vitro, with a maximum reduction of 4 log10 CFU/ml. In these studies, 50% of the maximum effect was achieved at a C/MIC ratio of 0.5, and the maximum effect did not increase with exposure times of up to 21 days. Conversely, isoniazid produced less than a 0.5-log10 CFU/ml reduction in two different intracellular infection models (J774A.1 murine macrophages and whole human blood). In a murine model of aerosol infection, isoniazid therapy for 6 days produced a reduction of 1.4 log10 CFU/lung. Dose fractionation studies demonstrated that the 24-h area under the concentration-time curve/MIC (r2 = 0.83) correlated best with the bactericidal efficacy, followed by the maximum concentration of drug in serum/MIC (r2 = 0.73).
منابع مشابه
Aerosol Infection Model of Tuberculosis in Wistar Rats
We explored suitability of a rat tuberculosis aerosol infection model for investigating the pharmacodynamics of new antimycobacterial agents. Infection of rats via the aerosol route led to a reproducible course of M. tuberculosis infection in the lungs. The pulmonary bacterial load increased logarithmically during the first six weeks, thereafter, the infection stabilized for the next 12 weeks. ...
متن کاملPopulation modeling and simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of isoniazid in lungs.
Among first-line antituberculosis drugs, isoniazid (INH) displays the greatest early bactericidal activity (EBA) and is key to reducing contagiousness in treated patients. The pulmonary pharmacokinetics and pharmacodynamics of INH have not been fully characterized with modeling and simulation approaches. INH concentrations measured in plasma, epithelial lining fluid, and alveolar cells for 89 p...
متن کاملA Physiologically Based Pharmacokinetic Model of Isoniazid and Its Application in Individualizing Tuberculosis Chemotherapy
Due to its high early bactericidal activity, isoniazid (INH) plays an essential role in tuberculosis treatment. Genetic polymorphisms of N-acetyltransferase type 2 (NAT2) cause a trimodal distribution of INH pharmacokinetics in slow, intermediate, and fast acetylators. The success of INH-based chemotherapy is associated with acetylator and patient health status. Still, a standard dose recommend...
متن کاملAssessing Pharmacodynamic Interactions in Mice Using the Multistate Tuberculosis Pharmacometric and General Pharmacodynamic Interaction Models
The aim of this study was to investigate pharmacodynamic (PD) interactions in mice infected with Mycobacterium tuberculosis using population pharmacokinetics (PKs), the Multistate Tuberculosis Pharmacometric (MTP) model, and the General Pharmacodynamic Interaction (GPDI) model. Rifampicin, isoniazid, ethambutol, or pyrazinamide were administered in monotherapy for 4 weeks. Rifampicin and isonia...
متن کاملSystems Pharmacology Approach Toward the Design of Inhaled Formulations of Rifampicin and Isoniazid for Treatment of Tuberculosis
Conventional oral therapies for the treatment of tuberculosis are limited by poor antibiotic distribution in granulomas, which contributes to lengthy treatment regimens and inadequate bacterial sterilization. Inhaled formulations are a promising strategy to increase antibiotic efficacy and reduce dose frequency. We develop a multiscale computational approach that accounts for simultaneous dynam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 48 8 شماره
صفحات -
تاریخ انتشار 2004